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Abstract 

High-frequency oscillations evoked by large stimuli have been observed in a variety of 

vertebrate retinas, but their role in visual function remains unresolved.  Here, we 

hypothesize that coherent oscillations in the spike trains of neighboring retinal ganglion 

cells encode global topological properties, such as size, that cannot be deduced locally 

from their mean firing rate.  We analyzed the single-trial responses of cat ganglion cells 

to spots of various sizes and found that the mean spectral amplitude between 75-95 Hz, 

computed from multi-unit spike trains 50-300 msec in duration, provided good 

discrimination (70% to 90%) between large and small spots.  While the strong size 

dependence of retinal oscillations has been previously observed, our study demonstrates 

that size information is encoded on single-trials and short time scales, a necessary 

condition for such information to be behaviorally relevant.  To examine whether the 

information content of retinal oscillations depends strongly on the underlying mechanism 

giving rise to them, we constructed two mathematical models: 1) a simple empirical rate-

modulated Poisson process and 2) a semi-realistic integrate-and-fire feedback circuit 

based on retinal anatomy.  For each model, the trial-averaged oscillatory behavior was 

matched to that observed experimentally.  In addition, the model firing rates were held 

constant with stimulus size and thus conveyed no topological information.  In both 

models we found single-trial encoding similar to that seen experimentally.  We suggest 

that coherent high frequency oscillations between retinal ganglion cells provide a 

mechanism for labeling local regions that are part of large visual features. 
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Introduction 

 High frequency oscillations have been observed in several vertebrate retinas, 

including cat (Steinberg, 1966; Laufer & Verzeano, 1967; Neuenschwander & Singer, 

1996; Neuenschwander et al., 1999), rabbit (Ariel et al., 1983), mudpuppy (Wachtmeister 

& Dowling, 1978), frog (Ishikane et al., 1999), macaque (Frishman et al., 2000) and 

human (Wachtmeister, 1998; De Carli et al., 2001).  Nevertheless, the role of oscillatory 

retinal activity in normal visual processing remains unresolved.  Here, we used both 

experimental and model spike trains to examine how coherent oscillations among 

neighboring retinal ganglion cells might encode global stimulus properties not locally 

available in their firing rates.  While ganglion cell firing rates typically depend on 

stimulus size, increasing for spot sizes smaller than the receptive field center and 

decreasing thereafter due to surround inhibition, modulations in the local mean spike 

activity cannot be disentangled from changes due to increasing or decreasing contrast.  

High frequency oscillations, on the other hand, are not evoked by small spots (Ariel et al., 

1983; Ishikane et al., 1999; Neuenschwander et al., 1999) and thus are not intrinsically 

confounded by local contrast.  Unlike information encoded by temporal synchrony, 

which is susceptible to contamination from chance coincidence and therefore potentially 

unreliable when the firing rate is high (Shadlen & Movshon, 1999), oscillations become 

easier to detect as the mean firing rate increases.   

 Here we hypothesize that the average firing rate in a small group of neighboring 

ganglion cells conveys information only about local stimulus properties, such as 

luminance contrast, while their coherent high frequency oscillations convey additional 

information about the global properties of the stimulus such as size.  To test this 
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hypothesis, we asked whether global topological information could be extracted from the 

coherent oscillations among neighboring retinal ganglion cells upon single stimulus 

presentations.  The answer to this question both constrains and informs the functional role 

of retinal oscillations.  In particular, any information contained in oscillations must be 

accessible on time scales of the order of 100 msec in order to be behaviorally relevant.  

Furthermore, the relatively low convergence of retinal neurons at early processing stages 

precludes averaging over large numbers of cells.  If size-dependent oscillations cannot be 

extracted from a relatively small number of ganglion cells on single stimulus trials, then 

it is unlikely that such oscillations could be functionally relevant at early processing 

stages.  On the other hand, by demonstrating that retinal oscillations convey global 

topological information that could be extracted early in the visual processing hierarchy, 

we can establish the plausibility of this processing mechanism.   

 We present a re-analysis of multi-unit spike trains from the cat retina that supports 

this hypothesis.  A discrimination analysis was performed between small and large spots 

on the basis of short sections of multi-unit spike train data, from 50 to 300 msec in 

duration and containing on the order of 4 to 5 ganglion cells located at the center of the 

stimulus.  Frequency spectra were computed from the individual epochs of multi-unit 

data and the average amplitude between 75 and 95 Hz was measured relative to baseline 

after normalizing by the total number of spikes.  Despite the presence of substantial 

single-trial variability, it was possible to discriminate between large and small stimuli, 

with performance levels between 70 and 90% depending on the length of the analysis 

window.   
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 We used theoretical models to obtain additional insight into the experimental data.  

An important question is whether the single trial discrimination mediated by 

experimentally recorded spike trains results from highly specialized processing, or is 

instead a general property of coherent oscillations that would likely be present regardless 

of the underlying mechanism.  We therefore analyzed an equivalent single-trial 

discrimination task using two very different models for generating spatial-temporal 

correlations.  In both models, the firing rate was held constant across stimulus conditions.  

Because different sized spots evoked different mean firing rates in the experimentally 

recorded spike trains, it was important to ensure that changes in the mean firing rate did 

not contribute to the discrimination task.  In both models, the size-dependent temporal 

correlations were similar to those measured experimentally.  In the first model, temporal 

correlations between the separate elements contributing to the multi-unit spike train arose 

from a common oscillatory modulation of their instantaneous firing probabilities, but the 

elements themselves did not interact.  In the second model (Kenyon et al., 2003), 

coherent oscillations arose from feedback interactions between ganglion cells and 

amacrine cells based on circuitry consistent with retinal anatomy (Dacey & Brace, 1992; 

Vaney, 1994; Jacoby et al., 1996).  Similar performance on the size discrimination task 

was obtained regardless of which mechanism was used to generate model spike trains.  

The models also allowed us to detail how the discrimination task depended on the length 

and number of neighboring cells included in the multi-unit record, an analysis that could 

not be performed with the existing experimental data.   

 

 5



Methods 

Physiological Recordings:  

Data from previously reported experiments in the cat retina were reanalyzed in 

order to quantify the information relating to the global stimulus topology conveyed by 

high frequency oscillations in short sections of multi-unit spike train data.  As no new 

experiments were conducted, and since a detailed description of the experimental 

methods is available elsewhere (Neuenschwander et al., 1999), only an abbreviated 

description of the experimental procedure is provided here.   

Intra-ocular recordings were made from anesthetized and paralyzed cats in 

response to spots of various sizes, presented at high contrast against a background 

illumination of ~0.4 cd-m-2.  Each spot of a given size was presented 20 times for a 

period of three seconds.  For each spot size, the total spike record across all trials was 

divided into 200 equally spaced, non-overlapping segments, from 50-300 msec in length.  

For purposes of this study, these 200 spike train segments were treated as independent 

stimulus trials.   

 

Model I: Rate-Modulated Poisson Process:   

Artificial spike trains were generated under the assumption that the 

spatiotemporal correlations between cat ganglion cells are due to a common oscillatory 

input that uniformly modulates the firing rates of all simultaneously recorded neurons.  

An oscillatory time series of a duration, T, and temporal resolution, ∆t, could be 

constructed by first defining the discrete frequencies, fk:  
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in terms of which the discrete Fourier coefficients were defined as follows: 
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where f0 is the central oscillation frequency, σ is the width of the spectral peak in the 

associated power spectrum and r is a uniform random deviate between 0 and 1 that 

randomized the phases of the individual Fourier components (generated by the Matlab® 

intrinsic function RAND).  These coefficients were used to convert back to the time 

domain using the discrete inverse Fourier transform: 
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where the real part of Rn denotes the value of the time-dependent firing rate at the discrete 

times, tn=n·∆t, N = T·∆t, A is an empirically determined scale factor and we have added a 

constant offset, R0, which sets the mean firing rate.  Values of A reported in the text, 

given in units of Hz, are expressed relative to the quantity D, the standard deviation of Rn 

over all n with A = 1.  Negative values of Rn were truncated at zero and the resulting time 

series rescaled so that its average value remained equal to R0.  The time series defined by 

Rn was used to generate oscillatory spike trains via a pseudo-random process: 

 ( )rtRS nn −∆= θ  (4) 

where Rn·∆t is the probability of a spike in the nth time bin, θ is a step function, 

θ (x<0) = 0, θ (x>0) = 1, and r is again a uniform random deviate.  In the limit that 

Rn·∆t << 1, the above procedure reduces to a rate-modulated Poisson process.  The same 

time series, Rn, was used to modulate the firing rate of each element contributing to the 
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artificially-generated multi-unit spike train, thus producing temporal correlations due to 

shared input. 

 

Model II: Integrate-and-Fire Feedback Circuit:   

A second and very different method for generating artificial spike trains used a 

semi-realistic model of the inner retina.  Input to the model was conveyed by an array of 

external currents proportional to the pixel-by-pixel grayscale value of a two-dimensional 

image.  These external currents directly stimulated the bipolar cells and approximated the 

light-modulated synaptic input from cone photoreceptors.  The bipolar cells produced 

excitatory postsynaptic potentials in both ganglion cells and amacrine cells according to a 

random process (Freed, 2000).  The axon-bearing amacrine cells were electrically 

coupled to neighboring ganglion cells and to each other, and made strong inhibitory 

connections onto the surrounding ganglion cells and axon-bearing amacrine cells (fig. 1).  

This feedback circuit produced robust oscillations in response to large stimuli.  When 

several ganglion cells were activated by a stimulus, they in turn activated neighboring 

axon-bearing amacrine cells via gap junctions (Dacey & Brace, 1992; Vaney, 1994; 

Jacoby et al., 1996).  The stimulated cells were then hyperpolarized by the ensuing wave 

of axon-mediated inhibition, thus setting up the next cycle of the oscillation.  Spike 

generation was modeled as a leaky integrate-and-fire process with a membrane time 

constant of 5 msec, consistent with published physiological data from cat alpha ganglion 

cells (O'Brien et al., 2002).  The model also contained local non-spiking amacrine cells 

that generated randomly distributed inhibitory postsynaptic potentials that helped make 

spontaneous firing asynchronous, but were not otherwise critical for generating 
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oscillatory spike trains.  Further details of model are presented in the appendix.  A 

thorough analysis of the behavior of the model, its robustness with respect to both 

numerical and physiological parameters and its connection to experimental data, is 

presented elsewhere (Kenyon et al., 2003). 

Figure 1 about here 

Correlation Analysis 

 Using multi-unit spike trains recorded from the cat retina, multi-unit auto-

correlograms were computed for each segment, 200 msec in duration, and the individual 

correlation functions normalized as a fraction of the expected synchrony due to chance, 

defined as the mean correlation amplitude for delays between 75-100 msec.  A 

correlation amplitude of one thus corresponded to a doubling in the number of correlated 

events over the expected rate during that trial.  By measuring correlations relative to the 

baseline present during the same trial, it was possible to compensate, in part, for changes 

in firing activity during the 3 second stimulus presentation.  All correlations were lag 

corrected for edge effects arising from the finite length of the spike train.  The single-trial 

auto-correlograms were averaged to produce a final correlation measure.   

 A similar analysis was used to measure correlations in artificially 

generated spike train segments, also 200 msec in duration.  However, for the artificially 

generated segments, correlations were computed separately between all distinct cell pairs 

contributing to the multi-unit record, and the individual cross-correlations were averaged 

to produce a multi-unit cross-correlogram that, unlike the individual auto-correlograms, 

remained finite at zero delay.  The multi-unit cross-correlograms measured on each 

stimulus trial were normalized relative to the expected correlations due to chance and 

averaged across all stimulus trials.  All multi-trial correlation measures used a bin width 
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of 1 msec.  Shift-predictors were not subtracted, as our hypothesis does not depend on 

whether or not oscillations are phase-locked to the stimulus onset. 

 

Size Discrimination 

 We assessed the ability to discriminate between small and large stimuli 

based on the average spectral amplitude in the upper gamma frequency band (75-95 Hz) 

as extracted from short segments of multi-unit spike train data on single trials.  For multi-

unit spike trains recorded from the cat retina, individual segments were 50-300 msec in 

duration and contained approximately 4-5 neurons, the exact number being unknown.  

Artificially generated spike train segments were 50-400 msec in duration and contained 

from 1-16 neurons, as indicated.  For spike trains generated by the integrate-and-fire 

retinal model, segments were always extracted from separate stimulus presentations 

during the plateau portion of the response, beginning 200 msec after stimulus onset.  To 

estimate the average spectral amplitude in the upper gamma band, the multi-unit spike 

train was Fourier transformed and the mean amplitude of the discrete Fourier coefficients 

between 75 and 95 Hz was computed.  The mean spectral amplitude in the upper gamma 

band was expressed as a fraction of the mean baseline spectral amplitude, defined here as 

the average between 120 and 500 Hz, computed on the same trial.  This normalization 

had little consequence for artificially generated spike trains, but was necessary to 

compensate for the changing baseline of the experimentally recorded data.  The average 

spectral amplitude in the upper gamma band was determined for each segment and the 

results expressed as a probability distribution.  The percentage of trials on which an the 

stimulus could be correctly classified as being either “small” or “large” was inversely 

related to the degree of overlap between the probability distributions for the two stimulus 

sizes.  Total overlap corresponded to performance at chance (50% correct) while zero 

overlap indicated perfect discrimination (100% correct).   
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Results 

 As reported previously (Neuenschwander et al., 1999), multi-unit auto-

correlograms recorded from cat retinal ganglion cells exhibited high frequency 

oscillations whose amplitude increased markedly with stimulus size (fig. 2a).  A small 

square spot, 0.7°×0.7°, produced negligible oscillations, while a large square spot, 

9.8°×9.8°, evoked strong oscillations at approximately 80 Hz.  An intermediate sized 

spot, 6.3°×6.3°, produced periodic correlations at similar frequencies to those elicited by 

the larger spot but of smaller amplitude and duration, indicating that over this range of 

spot dimensions oscillatory responses depend smoothly on stimulus size.  Periodic 

modulations in the multi-unit auto-correlogram declined with increasing delay, indicating 

that the oscillation phase drifted randomly over time.  The multi-unit auto-correlogram is 

undefined at zero delay and was set arbitrarily to zero.   

Figure 2 about here 

 Multi-unit cross-correlograms computed from spike trains produced by either by a 

simple rate-modulated Poisson process (model I, fig. 2b) or with a semi-realistic retinal 

feedback circuit (model II, fig. 2c) exhibited oscillations whose size dependence, 

amplitude, duration and frequency were similar to those measured experimentally.  For 

the rate-modulated Poisson process, the amplitude and width of the spectral peak were 

adjusted to produce a good qualitative fit with the physiological data for each spot size 

(A = 0, 31.5, 50 Hz, σ = 15, 9.5, 6.25 Hz, for the small, intermediate, and large spots, 

respectively.  The mean firing rate, R0, was 50 Hz.).  For the integrate-and-fire feedback 

circuit, we used square spots covering either 1×1, 4×4, or 6×6 ganglion cells (stimulus 
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intensity = 0.25).  Poisson distributed events were added to the spike trains generated by 

the retinal model, as necessary, to ensure that the mean firing rate was always 50 Hz 

regardless of stimulus size.  Both of the artificially generated event trains consisted of 4 

units, which in the case of the retinal model were taken from a 2×2 array of neighboring 

ganglion cells located at the center of the stimulus.   

 To quantify the dependence of oscillatory responses on stimulus size, we Fourier 

analyzed 200 msec epochs of both natural and artificial multi-unit spike trains, using the 

same data as for the above correlation analysis.  The magnitudes of the Fourier 

coefficients computed from individual spike train segments were normalized by the total 

number of events, given by the Fourier coefficient at 0 Hz, and the results from all 200 

stimulus trials averaged together (fig. 3).  In all three sets of data, a prominent peak in the 

upper gamma frequency band, approximately 75-95 Hz, became evident as the size of the 

stimulus increased.  Previous studies have shown that high frequency oscillations 

between spatially disconnected stimuli are not coherent (Neuenschwander & Singer, 

1996), implying that if the large spot were broken up into multiple small fragments, the 

prominent peak in the upper gamma frequency band would be abolished. 

Figure 3 about here 

 Measures of oscillatory responses among retinal ganglion cells presented so far, 

either multi-unit correlograms or frequency spectra, are all based on averages over 

multiple trials.  Such multi-trial measures are not available to the animal's nervous 

system, however.  For retinal oscillations to be behaviorally relevant, they must be 

detectable on physiological time scales, roughly 10s to 100s of msec.  Furthermore, the 

relatively low convergence from the retina onto targets early in the visual processing 
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pathway imposes constraints on the size of the ganglion cell population that should be 

included in the analysis.  Consistent with these constraints, there were approximately 4-5 

ganglion cells in the multi-unit spike trains recorded from the cat retina and the 

artificially generated spike trains contained exactly 4 units.  To examine the detectability 

of retinal oscillations, we computed averages of normalized frequency spectra in the 

upper gamma band, 75-95 Hz, relative to the averaged spectral amplitude between 

120-500 Hz present during the same 200 msec epoch.  The analysis was repeated for all 

200 epochs and the results presented as a probability distribution for each stimulus size 

(fig. 4).  For both natural and artificial spike trains, there is relatively little overlap 

between the distributions for the smallest and largest stimuli, implying that gamma-band 

oscillations from a small group of neighboring ganglion cells permit good single-trial 

discrimination.   

Figure 4 about here 

 To quantify the degree of discrimination theoretically possible on single stimulus 

trials, we employed a Bayes discriminator (Duda et al., 2001).  Using the probability 

distributions shown above, we found that 200 msec segments of multi-unit spike trains 

from the cat retina permit discrimination between larger and small spots on more than 

80% of the trials (fig. 5a).  Thus, the average spectral amplitude in the upper gamma band 

across a small number of neighboring ganglion cells conveyed enough information on 

behaviorally relevant time scales to determine whether the recorded neurons were 

responding to a small or large stimulus.  The artificially generated spike trains yielded 

slightly better performance on the size discrimination task, exceeding 90% correct for 

both models (fig. 5b,c).  The artificially generated spike trains all had the same mean 
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firing rate regardless of stimulus size, showing that differences in the total number of 

spikes were irrelevant to the size discrimination task.   

 It is uncertain why the spike trains generated artificially yielded better 

performance then those recorded experimentally.  One explanation is that the 

experimentally recorded spike trains may have included ganglion cells of different types 

and opposite ON/OFF response polarities whereas the computer generated spike trains 

were derived from a homogeneous population.  The changing baseline of the 

experimentally recorded spikes trains may also have confounded the discrimination 

analysis, despite efforts to correct for non-stationary effects.  Thus, the performance 

levels obtained with the experimentally recorded data likely reflect a lower bound on the 

maximum performance levels theoretically attainable.  

Figure 5 about here 

 We next examined how the information about the stimulus size encoded by retinal 

oscillations depends both on the length of, and number of neurons contributing to, the 

multi-unit spike record.  Performance on the size discrimination task, as measured by the 

percentage of correctly classified trials in which either the small or the large spot was 

presented with equal probability, was plotted as a function of the analysis window size.  

For the artificially generated spike trains, the analysis used either 1×1, 2×2, 3×3, or 4×4 

neurons, corresponding to 1, 4, 9, or 16 total cells, respectively (fig. 6).  For 

simultaneously recorded cat ganglion cells, performance ranged from approximately 

70-90% as the analysis window size increased from 50 to 300 msec.  Both theoretical 

models suggested that the information content of simultaneously recorded spike trains 

depends strongly on the number of cells included in the multi-unit record.  Even for 
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analysis windows as short as 50 msec, performance levels of 80% or better could be 

achieved by including a sufficient number of cells.  The ability to extract topological 

information from 50 msec spike train segments was particularly evident for the rate-

modulated Poisson process, while artificial spike trains generated by the retinal model 

conveyed substantially less size information on short time scales.  This discrepancy may 

be related to the synchronization of neighboring ganglion cells in the retinal model due to 

their extensive gap junction coupling via amacrine cells.  In both models, performance 

levels at or above 80% could be achieved with only four units in approximately 

100 msec, a result consistent with the low convergence at early visual processing stages.   

Figure 6 about here 
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Discussion 

 We have examined the role of ganglion cell oscillations in the encoding of visual 

information.  Our analysis shows that high frequency oscillations in small groups of 

neighboring ganglion cells allow single-trial discrimination between large and small spots 

on biologically reasonable time scales.  This single trial discrimination is essential if 

synchronous oscillations between retinal neurons are to convey behaviorally relevant 

stimulus attributes to early visual processing stages.  Similar single trial discrimination 

was observed in two very different theoretical models whose multi-trial correlations were 

both consistent with experimental data, suggesting that the information conveyed by 

coherent oscillations is not strongly dependent on the underlying physiological 

mechanisms giving rise to the oscillations.  In particular, similar single trial 

discrimination was obtained regardless of whether temporal correlations were produced 

by periodically modulated common input or through the dynamics of synaptically 

mediated feedback loops. 

 Ganglion cell firing rates are strongly modulated by local stimulus properties, 

such as contrast.  The average firing rate among a small group of neighboring ganglion 

cells cannot therefore convey information about global stimulus properties without being 

confounded by local attributes.  High frequency oscillations, on the other hand, are not 

evoked by small spots, even at high contrast.  Thus, oscillations among a small group of 

neighboring ganglion cells can reliably signal that the stimulus to which they are 

responding is part of a large feature extending beyond their central receptive fields.  High 

frequency oscillations therefore allow global topological information to be encoded by 

local spiking activity.   
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 Encoding the presence of a large visual feature early in the visual system has 

potential behavioral advantages.  For many organisms large objects represent possible 

danger and early detection allows for an early evasive response.  It is possible, for 

instance, that high frequency oscillations between dimming detectors in the frog retina 

contribute to just such an early warning system (Ishikane et al., 1999).  Likewise, in 

weakly electric fish, synchronized oscillations allow discrimination between prey and 

communication signals (Doiron et al., 2003).  The question of how oscillatory 

information might be decoded by downstream networks is beyond the scope of the 

present study.  However, we may imagine that corresponding high frequency resonances, 

of cellular, synaptic and/or network origin might cause neural circuits in the LGN or 

primary visual cortex to respond preferentially to oscillatory input. 

 The role of correlations in the neural code is controversial.  Using an information 

theoretic analysis it has recently been argued that correlations between retinal ganglion 

cells encode relatively small amounts of additional information about natural visual 

scenes compared to their independent firing rates (Nirenberg et al., 2001).  These results 

are not inconsistent with our work as their analysis used a 10ms time window in which it 

is impossible to resolve oscillations in the upper gamma band.  In addition, the role of 

synchrony as a possible binding mechanism has sparked intense debate (Singer & Gray, 

1995; Shadlen & Movshon, 1999).  Our results suggest that oscillations may encode 

global stimulus information regardless of their possible contribution to feature binding.  

Finally, it has been observed that any correlation between neural spike-trains is 

detrimental to rate-coded signals (Shadlen & Newsome, 1998).  Correlations, however, 

are ubiquitous throughout the brain and our results demonstrate that, at least in some 
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cases, temporal correlations convey potentially useful information not present in the local 

firing rates.   
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Appendix 

Retinal Model 

 Artificial spike trains with realistic spatiotemporal correlations were generated by 

a retinal feedback circuit (fig 1), organized as a 32×32 array with wrap-around boundary 

conditions containing 5 distinct cell types: Bipolar cells, small amacrine cells, large 

amacrine cells, axon-bearing amacrine cells, and ganglion cells.  All cell types were 

modeled as single compartment, RC circuit elements obeying a first order differential 

equation that can be written efficiently in terms of matrix multiplications: 
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where  is a 2-D array denoting the normalized membrane potentials of all cells of 

type k, ,  is the time constant,  is a bias current for setting the resting 

potential, 
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is an external input intended to represent light stimulation,  gives the 

connection strengths between presynaptic {k΄} and postsynaptic {k} cell types as a 

function of their separation along one direction, defined here as ‘vertical’, 
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the same information as a function of separation along the perpendicular direction, 

defined here as ‘horizontal’, and the functions  give the associated input-output 

relations for the indicated pre- and post-synaptic cell types, detailed below.  All 

membrane potentials were subject to a lower cutoff, equal to –1.5.  The output of the 

axon-mediated inhibition was delayed by 2 msec, except for the axonal connections onto 

the axon-bearing amacrine cells, which was delayed for 1 msec.  All other synaptic 

interactions were delayed by 1 msec.  All equations were integrated in Matlab® using a 

direct Euler method with an integration time step of 1 msec. 

),( kkf ′

The input-output function for gap junctions was given by the identity: 

 ( ) )()(),( kkkk VVf ′′′ =
tt

, (A2) 
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where the dependence on the presynaptic potential has been absorbed into the definition 

of .  This is possible because both the decay term in equation A1 and the omitted 

dependence on the presynaptic potential in equation A2 depend linearly on , 

allowing the coefficients to be combined.  The input-output function for non-spiking 

synapses was constructed by comparing, on each time step, a random number with a 

Fermi-function: 
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where α sets the gain (equal to 4 for all non-spiking synapses), r is a uniform random 

deviate equally likely to take any real value between 0 and 1, and θ is a step function, 

0,1)( ≥= xxθ ; 0,0)( <= xxθ .   

Lastly, the input-output relation used for spiking synapses was: 

 ( ) ( ))()(),( kkkk VVf ′′′ =
tt

θ . (A4) 

A modified integrate-and-fire mechanism was used to model spike generation.  A 

positive pulse (amplitude = 10.0) was delivered to the cell on the time step after the 

membrane potential crossed threshold, followed by a negative pulse (amplitude = -10.0) 

on the subsequent time step.  This resulted in a 1 msec action potential that also produced 

impulse responses in electrically coupled cells, an important element of the circuit 

dynamics.  The bias current, b, was incremented by -0.5 following each spike, and then 

decayed back to the resting value with the time constant of the cell, adding to the relative 

refractory period.  There was in addition an absolute refractory period of 1 msec. 

Along both the horizontal and vertical directions, synaptic strengths fell off as 

Gaussian functions of the distance between the pre- and post-synaptic cells.  For a given 

horizontal separation, the horizontal weight factor was determined by a Gaussian function 

of the following form: 
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where  is the horizontal weight factor from presynaptic cells of type k΄ located in 

the jth column to the postsynaptic cells of type k located in the ith column, α is a 

normalization factor, determined numerically, which ensured that the total synaptic input 

integrated over all presynaptic cells of type k΄ to every postsynaptic cell of type k equaled 

, σ is the Gaussian radius of the interaction, and the quantity 
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),( kkW ′ )'()( kk ji −  denotes 

the horizontal distance between the pre- and post-synaptic cells, taking into account the 

wrap around boundary conditions employed to mitigate edge effects.  An analogous 

weight factor describes the dependence on vertical separation.  Equation A5 was 

augmented by a cutoff condition that prevented synaptic interactions beyond a specified 

distance, determined by the radius of influence of the presynaptic outputs and the 

postsynaptic inputs, roughly corresponding to the axonal and dendritic fields, 

respectively.  A synaptic connection was only possible if the output radius of the 

presynaptic cell overlapped the input radius of the postsynaptic cell.  Except for axonal 

connections, the input and output radii were the same for all cell types.  For the large 

amacrine cells and the ganglion cells, the radius of influence extended out to the centers 

of the nearest neighboring cells of the same type, producing a coverage factor greater 

than one (Vaney, 1990).  The radii of the bipolar, small, and axon-bearing amacrine cells 

(non-axonal connections only) extended only halfway to the nearest cell of the same type, 

giving a coverage factor of one (Cohen & Sterling, 1990).  The external input was 

multiplied by a gain factor of 3.  Values for model parameters are listed in tables 1 and 2.  

A more complete description of the model is presented elsewhere (Kenyon et al., 2003). 
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Table 1: Cellular parameters. 

  τ  b  n×n  d  σ 

BP  10.0  -0.0  64×64  0.25  0.25 

SA  25.0  -0.5  64×64  0.25  0.25 

LA  20.0  -0.25  32×32  1.0  0.5 

PA  5.0  -0.025  64×64  0.25/9.0a 0.25/3.0a 

GC  5.0  -0.025  32×32  1.0  0.5 

Explanation of symbols: τ: time constant (msec); b: bias; n×n: array size; d: cutoff radius, 

σ: Gaussian radius (see eq. 5).  aInner radius/outer radius.   
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Table 2: Synaptic weights. 

 BP  SA  LA  PA   GC 

BP *  -0.375b - 3.0b  -3.0b/-15.0c  * 

SA 3.0b  *  -3.0b   0.0b/-15.0c  * 

LA 3.0b  *  0.25a  -3.0a/-15.0c  * 

PA 0.75b  -0.75b  0.25a  0.25a/-45.0c  0.25a,d 

GC 9.0b  -4.5b  -4.5b  0.25a/-270.0c  * 

Each term represents the total integrated weight from all synapses arising from the 

corresponding presynaptic type (columns) to each cell of the corresponding postsynaptic 

type (rows), (the quantity  in eq. 5).  Asterisk (*) indicates absence of 

corresponding connection.  Synapse type indicated by superscript: agap junction, bnon-

spiking synapse, cspiking synapse. dMaximum coupling efficiency (ratio of post- to pre-

synaptic depolarization) for this gap junction synapse: DC=11.3%, Action 

Potential=2.7%. 

),( kkW ′
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Figure Captions 

 

Figure 1.  Schematic of the retinal feedback circuit.  Only those elements directly 

responsible for synchronous oscillations are depicted.  A combination of local excitation 

via gap junctions (resistors) and long-range inhibition via axon-bearing amacrine cells 

(gray dotted lines and filled black circles) produced physiologically realistic size-

dependent oscillations.  The entire model contained a 32×32 array of ganglion cells 

driven by a 64×64 array of bipolar cells, with inhibitory feedback arising from a 64×64 

array of axon-bearing amacrine cells, only a few of which are shown.  Light stimuli were 

implemented by injecting currents directly into bipolar cells.   

 

Figure 2.  Multi-unit auto- and cross-correlograms reveal size-dependent high frequency 

oscillations.  a) Auto-correlograms computed from multi-unit spike trains recorded from 

cat retina at the center of square spots of increasing size (data replotted from 

(Neuenschwander et al., 1999)).  Correlations expressed as a fraction of the expected 

level due to chance.  Bottom Trace: spot size = 0.7º×0.7º.  Middle Trace: spot size = 

6.3º×6.3º.  Top Trace: spot size = 9.8º×9.8º.  Individual traces are offset by 2 units for 

clarity.  (b) Multi-unit cross-correlograms of artificial spike trains generated by a Poisson 

process containing 4 identically modulated units, each with a mean firing rate of 50 Hz.  

c) Multi-unit cross-correlograms produced by an integrate-and-fire feedback circuit 

consistent with retinal anatomy.  The retinal model was stimulated by stationary spots 

(intensity = -2) covering 1×1, 4×4 and 6×6 ganglion cells.  Multi-unit spike-trains were 

recorded from a fixed 2×2 array of ganglion cells located at the center of each spot.  
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Poisson distributed spikes were added to each train to maintain a constant mean firing 

rate of 50 Hz regardless of spot size. 

 

Figure 3.  Frequency spectra of natural and artificial multi-unit spike trains as a function 

of spot size.  Same data and general organization as in figure 2.  a) Frequency spectra, 

normalized by the total number of spikes, computed from multi-unit spike trains recorded 

from the cat retina in response to different sized spots.  b) Normalized frequency spectra 

of multi-unit spike trains generated by a rate-modulated Poisson process.  c) Normalized 

frequency spectra of multi-unit spike trains produced by the retinal feedback circuit.  In 

all panels, a prominent peak in the upper gamma band, roughly 75-95 Hz, becomes 

evident as spot size increases.   

 

Figure 4.  Distribution of the mean spectral amplitude in the upper gamma band across 

individual 200 msec segments of multi-unit firing activity.  Same data as in figures 2 

and 3.  Average Fourier amplitude in the upper gamma band, between 75 and 95 Hz, was 

measured relative to the average baseline amplitude between 120 and 500 Hz.  Results 

distributed among 11 uniform bins (arbitrary units).  a) Distribution of average gamma 

spectral amplitude in short multi-unit spike trains recorded from cat retinal ganglion cells.  

The distribution of gamma amplitudes elicited by a small spot (dotted line) is largely 

distinguishable from that elicited by both intermediate (dashed line) and large spots (solid 

line).  b) Distribution of gamma amplitudes in multi-unit spike trains produced by a rate-

modulated Poisson process.  c) Analogous distribution arising from retinal feedback 

circuit.  In both sets of artificially generated spike trains, the distributions of gamma 
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amplitudes associated with different spot sizes are clearly distinct, suggesting that the 

information content of the oscillations does not depend strongly on the underlying 

mechanism giving rise to them. 

 

Figure 5.  Theoretically optimal performance on a size discrimination task.   Individual 

200 msec segments of multi-unit spike train data were obtained in response to spots of 

one of two sizes: 1) either an intermediate or small spot (top abscissa = 6.3º×6.3º, bottom 

abscissa = 4×4) or 2) either a large or small spot (top abscissa = 9.8º×9.8º, bottom 

abscissa = 6×6).  The ordinate gives the maximum percentage of trials that could be 

classified correctly, assuming each binary possibility was equally likely a priori, based 

on the distributions shown in figure 4.  All three data sets indicate that high frequency 

oscillations within a small group of ganglion cells yield good single trial discrimination 

of stimulus size. 

 

Figure 6.  Size-discrimination improves as multi-unit spike train segments become longer 

and/or include more cells.  An ideal observer was used to discriminate between multi-unit 

spike records produced by either a small or a large spot.  a) Maximum percentage of 

correctly classified trials plotted as a function of the analysis window size for multi-unit 

spike trains recorded from cat retinal ganglion cells.  Performance levels ranged from 

approximately 70 to 90% as the length of the multi-unit spike train segment increased 

from 50 to 300 msec.  b) Percent of correctly classified trials using multi-unit spike trains 

generated by a rate-modulated Poisson process.  Performance improved with longer 

analysis windows and as more units were included in the spike record.  (Explanation of 
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symbols: ○=1, □=4, ◊=9, ×=16 units).  c) Percentage of correctly classified trials using 

multi-unit spike trains generated by the retinal feedback circuit.  (Explanation of 

symbols: ○=1×1, □=2×2, ◊=3×3, ×=4×4 model ganglion cells).  Performance was again 

strongly dependent on the analysis window size and on the number of neighboring 

ganglion cells included in the analysis. 
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